
International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Humming Bird (01st March 2014)

 Cape Institute of Technology 19 | P a g e

Congestion Control for Avoiding Packet Loss in Data Centric

Network

S.M.BaslinNixy,
PG Scholar Department of Information Technology

Francis Xavier Engineering College Vannarpettai,

Tirunelveli. nixylazar@gmail.com,9442022721

S.Agnes Joshy
Assistant Professor Department of Information

Technology Francis Xavier Engineering College

Vannarpettai, Tirunelveli. sagnesjoshy@gmail.com

Abstract
In TCP multiple synchronized servers send data to the same receiver in parallel, so the incast congestion will

occur. Basically incast congestion happens in high-bandwidth and low latency networks. TCP incast congestion

severely degrade the performances of the system.TCP incast congestion is studied by focusing the relationship

between TCP throughput, round-trip time and receive window. In receiver side window, the packet received in

parallel at same time. So packet loss occurs due to congestion. Before the packet loss occurs, the bandwidth

calculation and adjusting of window size in receiver side can be done. Based on the packet, the window size is

adjusted in the receiver side. By transmitting the packet to the receiver in different paths the performance time

will be reduced. From this Zero timeouts and high goodput for TCP incast can be achieved.
Index Terms—Data-center networks, incast congestion, bandwidth calculation,TCP

I. INTRODUCTION
Transport Control Protocol (TCP) is widely

used on the Internet and generally works well.

However, recent studies have shown that TCP does

not work well for many-to-one traffic patterns on

high-bandwidth, low-latency networks. Congestion

occurs when many synchronized servers under the

same Gigabit Ethernet switch simultaneously send

data to one receiver in parallel. Only after all

connections have finished the data transmission can

the next round be issued. Thus, these connections are

also called barrier-synchronized. The final

performance is determined by the slowest TCP

connection, which may suffer from timeout due to

packet loss. The performance collapse of these many-

to-one TCP connections is called TCP incast

congestion.

In TCP the multiple servers send data to the

receiver, so congestion may occur in network. If

congestion occurred, the packet loss can be

happened. For that using the TCP protocol used to

calculate bandwidth for the each packet. If the

incoming packet was larger, then the window size

will be extend based on the size of that packet. So

congestion will be avoided before the packet loss

occurs. We have developed and implemented ICTCP

as a Windows Network Driver Interface Specification

(NDIS) filter driver. Our implementation naturally

supports virtual machines that are now widely used in

data centers. Our per-flow congestion control is

performed independently of the slotted time of the

round-trip time (RTT) of each connection, which is

also the control latency in its feedback loop. Our

receive window adjustment is based on the ratio of

the difference between the measured and expected

throughput over the expected. This allows us to

estimate the throughput requirements from the sender

side and adapt the receiver window accordingly. We

also find that live RTT is necessary for throughput

estimation as we have observed that TCP RTT in a

high-bandwidth low-latency network increases with

throughput, even if link capacity is not reached.

II. BACKGROUND AND

MOTIVATION
TCP incast congestion occurs when multiple

blocks of a file are fetched from multiple servers at

the same time. Several application-specific solutions

have been proposed in the context of parallel file

systems. With recent progress in data-center

networking, TCP incast problems in data-center

networks have become a practical issue. Since there

are various data-center applications, a transport-layer

solution can obviate the need for applications to build

their own solutions and is therefore preferred.

A. TCP Incast Congestion:
Incast congestion happens when multiple

sending servers under the same ToR switch send data

to one receiver server simultaneously. The amount of

data transmitted by each connection is relatively

small. As the TCP receive window has the ability to

control TCP throughput and thus prevent TCP incast

collapse, we consider how to dynamically adjust it to

the proper value. We start with the window-based

congestion control used in TCP. As we know, TCP

RESEARCH ARTICLE OPEN ACCESS

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Humming Bird (01st March 2014)

 Cape Institute of Technology 20 | P a g e

uses slow start and congestion avoidance to adjust the

congestion window on the sender side. TCP

throughput is severely degraded by incast congestion

since one or more TCP connections can experience

timeouts caused by packet drops. TCP variants

sometimes improve performance, but cannot prevent

incast congestion collapse since most of the timeouts

are caused by full window losses due to Ethernet

switch buffer overflow. The TCP incast scenario is

common for data-center applications. For example,

for search indexing we need to count the frequency of

a specific word in multiple documents. This job is

distributed to multiple servers, and each server is

responsible for some documents on its local disk.

Only after all servers return their counts to the

receiving server can the final result be generated.

Fig. 1. Scenario of incast congestion in data-center

networks

B. TCP Goodput, Receive Window, and RTT:
The TCP receive window is introduced for

TCP flow control, i.e., preventing a faster sender

from overflowing a slow receiver’s buffer. The

receive window size determines the maximum

number of bytes that the sender can transmit without

receiving the receiver’s ACK. A previous study

mentioned that a small static TCP receive buffer may

throttle TCP throughput and thus prevent TCP incast

congestion collapse. We observe that an optimal

receive window exists to achieve high goodput for a

given number of senders. As an application layer

solution, a capped and well-tuned receive window

with a socket buffer may work for a specific

application in a static network. The background

connection can be generated by other applications, or

even from other VMs in the same host server. Thus, a

static buffer cannot work for a changing number of

connections and cannot handle the dynamics of the

applications’ requirements.

III. ICTCP ALGORITHM
ICTCP provides a receive-window-based

congestion control algorithm for TCP at the end-

system. The receive windows of all low-RTT TCP

connections are jointly adjusted to control throughput

on incast congestion.

A. Available Bandwidth:
Our algorithm can be applied to a scenario

where the receiver has multiple interfaces, and the

connections on each interface should perform our

algorithm independently. Assume the link capacity of

the interface on the receiver server is C. Define the

bandwidth of the total incoming traffic observed on

that interface as BW1.

𝐵𝑤1 = 𝑀𝑎𝑥(0,𝛼 ∗ 𝑐 − 𝐵𝑊)

Where 𝛼 € [0,1] is a parameter to absorb

potential oversubscribed bandwidth during window

adjustment. In ICTCP, we use available bandwidth

BW1 as the quota for all incoming connections to

increase the receive window for higher throughput.

IV. MODULE IMPLEMENTATION
In this section, we describe the

implementation of ICTCP, which is developed in an

NDIS driver on the Windows OS.

A. Authentication Module:

The Major motto of the authenticate module

is that is used for identifying the user and

recognizing the user for network transmission , since

authentication module first gently gets the clients

information and then it assigns the proper

authentication name with password using which the

clients can enter into the network transmission.

B. Client Server Connection:

After allotting the proper authorization and

authentication of the client, then the client enter in

the client server connection module. In this module

the client first generates the client request with client

header and client request time and client request with

server path i.e. server name and its IP header.

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Humming Bird (01st March 2014)

 Cape Institute of Technology 21 | P a g e

Fig. 2: Modules in ICTCP

C. Handling Requests:

Since all the client are dynamically

transmitting the request to the server, the server using

the TCP /IP connection it only accepts the one client

at a time so that all other request are being made to

be in waiting state. Thus the message will be

transmitted to all other user. To avoid response time

out process, the handling request module generate the

unique id and assigns to the request, the response

delay time will also been altered by this module.

D. ICTCP Module:

The ICTCP module is the Major module in

which all the handling request will be handled

properly without moving it to the response out. The

ICTCP modules here calculate all the request

bandwidth based on the bandwidth it re order the

request. After proper reordering, it finally calculates

the whole capacity of the request send by the clients

and based on the bandwidth obtained. The ICTP

changes the Receiver window size of the server. So

that it can handle too many requests at a time. After

changing receiver window size the reorder request

will be send to the server based on the unique id, thus

all the Request send by the client will be handled

within the complete timeout of the client requests.

V. EXPERIMENTAL RESULTS
The implementation is to avoid the

congestion during the packet transmission. The CPU,

memory, and hard disk were never a bottleneck in

any of our experiments. Construct the incast scenario

where multiple sending servers generate TCP traffic

to a receiving server under the same switch. The

servers in our test bed have their own background

TCP connections for various services, but the

background traffic amount is very small compared to

our generated traffic. The test bed is in an enterprise

network with normal background broadcast traffic.

 Note that all the TCP stacks were the same

in our experiments, and ICTCP was implemented on

a filter driver at the receiver side. The goodput shown

is the average value of 100 experimental rounds. We

observe the incast congestion: With the number of

sending servers increasing, the goodput per round

actually drops due to TCP timeout on some

connections. The smallest number of sending servers

to trigger incast congestion varies with the traffic

amount generated per server: With a larger amount of

data, a smaller number of sending servers is required

to trigger incast congestion.

We observe that ICTCP achieves smooth

and increasing goodput with the number of sending

servers increasing. A larger data amount per sending

server results in a slightly higher goodput. The

averaged goodput of ICTCP shows that incast

Congestion is effectively throttled. The goodput of

ICTCP, with a varying number of sending servers

and traffic amount per sending servers.

VI. CONCLUSION
In this paper a lightweight and high-

performance Window NDIS filter driver the

implementation of ICTCP has been developed.

ICTCP avoid congestion in the network during

packet transmission. And the window size also

adjusts based on the size of the packet. Based on the

throughput the receiver side window size will be

expanding. By transmitting the packet to the receiver

in different paths the performance time will be

reduced. From this the experimental results

demonstrate that ICTCP is effective in avoiding

congestion by achieving almost zero timeouts for

TCP incast, and it provides high performance.

REFERENCES
[1] Haitao Wu, Zhenqian Feng, Chuanxiong Gu,

Yongguang Zhang, “ICTCP: Incast

Congestion Control for TCP in Data Center

Networks,” IEEE/ACM TRANSACTIONS

Application

TCP/IP

ICTCP

ICTCP Rerouting Transmission

Packet

Header

Data

Transmission

ICTCP

Algorithm

Receiver

Capacity

Estimation

Band with

Calculation

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Humming Bird (01st March 2014)

 Cape Institute of Technology 22 | P a g e

ON NETWORKING, VOL. 21, NO. 2,

APRIL 2013.

 [2] Lawrence S. brakmo, IEEE and Larry L.

Peterson, “TCP Vegas: End to End

Congestion Avoidance on a Global Internet

IEEE journal on Selected Area in

Communications, Vol. 13, No.8, October

1995

[3] Neil T. Spring, Maureen Chesire, Mark

Berryman, Vivek Sahasranaman, Thomas

Anderson and Brian Bershad., “Receiver

Based Management of Low Bandwidth

Access Links,” IEEE INFOCOM 2000.

[4] Puneet Mehra and Avideh Zakhor,

Christophe De Vleeschouwer, “Receiver-

Driven Bandwidth Sharing for TCP”,

IEEE INFOCOM 2003

 [5] Corin Jeffrey Dean and Sanjay Ghemawat,

“MapReduce: Simplified Data Processing on

Large Clusters”, USENIX Association

[6] David Nagle, Denis Serenyi, Abbie

Matthews, “The Panasas ActiveScale

Storage Cluster – Delivering Scalable High

Bandwidth Storage,” IEEE SC2004

Conference, November 6-12, 2004.

[7] Amar Phanishayee, Elie Krevat, Vijay

Vasudevan, David G. Andersen, Gregory R.

Ganger, Garth A. Gibson, Srinivasan

Seshan, Measurement and Analysis of TCP

Throughput Collapse in Cluster-Based

Storage System,” Carnegie Mellon

University, September 2007.

[8] Chuanxiong Guo, Haitao Wu, Kun Tan, Lei

Shiy, Yongguang Zhang, Songwu Luz

“DCell: A Scalable and Fault-Tolerant

Network Structure for Data Centers,”

SIGCOMM’08, August 17–22, 2008.

[9] Mohammad Al-Fares, Alexander Loukissas,

Amin Vahdat, " A Scalable, Commodity

Data Center Network Architecture ",

SIGCOMM’08, August 17–22, 2008.

[10] Mather Chuanxiong Guo, Guohan Lu, Dan

Li, Haitao Wu, Xuan Zhang, Yunfeng Shi,

Chen Tian1;4, Yongguang Zhang1, Songwu

Lu, “BCube: A High Performance, Server-

centric Network Architecture for Modular

Data Centers ”,SIGCOMM’09, August

2009.

